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Abstract

We present a block algorithm for computing rank-revealing QR factorizations
(RRQR factorizations) of rank-deficient matrices. The algorithm is a block gener-
alization of the RRQR-algorithm of Foster and Chan. While the unblocked algorithm
reveals the rank by peeling off small singular values one by one, our algorithm identifies
groups of small singular values. In our block algorithm, we use incremental condition
estimation to compute approximations to the nullvectors of the matrix. By applying
another (in essence also rank-revealing) orthogonal factorization to the nullspace ma-
trix such created, we can then generate triangular blocks with small norm in the lower
right part of R. This scheme is applied in an iterative fashion until the rank has been
revealed in the (updated) QR factorization. We show that the algorithm produces the
correct solution, under very weak assumptions for the orthogonal factorization used for
the nullspace matrix. We then discuss issues concerning an efficient implementation of
the algorithm and present some numerical experiments. Our experiments show that
the block algorithm is reliable and successfully captures several small singular values,
in particular in the initial block steps. Our experiments confirm the reliability of our
algorithm and show that the block algorithm greatly reduces the number of triangular
solves and increases the computational granularity of the RRQR computation.
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1 Introduction

The rank-revealing QR factorization (RRQR Factorization) is a valuable
tool in numerical linear algebra, because it detects the numerical rank of a
matrix and because it provides the necessary information to solve many rank-
deficient least-squares problems, namely, accurate information about rank and
numerical nullspace. The RRQR factorization takes advantage of the efficiency
and simplicity of the QR factorization, yet it produces information that is almost
as reliable as that computed by means of the more expensive singular value
decomposition.

Its main use arises in the solution of rank-deficient least-squares problems,
for example, in geodesy [15], computer-aided design [19], nonlinear least-squares
problems [24], the solution of integral equations [12], and in the calculation
of splines [18]. Other applications arise in beamforming [5], spectral estima-
tion [23], and regularization [20,21,28].

We briefly summarize the properties of a rank-revealing QR factorization.
Let A be an m x n matrix A (w.l.o.g. m > n) and with singular values

o120 2. 20,20, (1)

and define the numerical rank r of A with respect to the threshold 7 as the
number of singular values strictly greater than 7: ¢, > 7 > o,41. Also, let A
have a QR factorization of the form
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where P is a permutation matrix and ) has orthonormal columns. We then
say that (2) is a RRQR factorization of A if the following three properties are
satisfied:

1. Ryq is an r X 7 matrix with condition number of the order o1 /0,
2. ||Razl|2 is of the order o,41, and
3. r1s the numerical rank of A.

Whenever there is a well-determined gap in the singular value spectrum between
o, and o,41, and hence the numerical rank r is well defined, then the RRQR
factorization (2) reveals the numerical rank of A by having a submatrix Ras
with elements of the order ¢,41 and a well-conditioned leading submatrix Ri;.

We note that recently Stewart suggested a rank-revealing complete orthog-
onal factorization, the so-called URV decomposition [27]. This factorization
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where U and V are orthogonal and both ||Ri2||2 and ||Ras||2 are of the order
or41. In particular, compared with the RRQR factorization, URV decomposi-
tions have a general orthogonal matrix V instead of the permutation matrix P.
URYV decompositions are more expensive to compute, but they are well suited for
nullspace updating. RRQR factorizations, on the other hand, are more suited
for the least-squares setting, since one need not store the orthogonal matrix V/
(the other orthogonal matrix is usually applied to the right-hand side “on the
fly”). Of course, RRQR factorizations can be used to compute an initial URV
decomposition, where U = ) and V = P. We also note that the matrix
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which can be easily computed from (2), is usually a good approximation of the
nullvectors, and a few steps of subspace iteration suffice to compute nullvectors
that are correct to working precision [10].

An algorithm for computing an RRQR factorization was discovered inde-
pendently by Foster [13] and Chan [8]. Their idea is first to compute any QR
factorization of A and then to post-process the triangular factor R to “peel off”
the small singular values of A one at a time. Their algorithm has the additional
property that

omin(R(1: k,1: k) mop(A),k=r,....n, (3)

where omin(A) is the smallest singular value of a matrix A.

This property, however, is not important for most applications of RRQR
factorizations [10], where one is interested only in capturing the break between
“large” and “small” singular values. In this paper, we propose a block method
that gives up (3), but can identify several small singular values at a time and
will capture the break between “large” and “small” singular values.

Our paper 1s organized as follows. In Section 2 we describe how we compute
an initial estimate of the numerical rank using incremental condition estimation
(ICE) and how we can use ICE to arrive at cheap estimates for the nullvectors of
leading triangular submatrices. In Section 3 we introduce our block algorithm,
which will identify a rank-revealing permutation by essentially computing a
rank-revealing orthogonal factorization of the nullvector matrices generated by
ICE. In Section 4 we show that this scheme is guaranteed to capture the break
between “large” and “small” singular values, under very weak assumptions for
the orthogonal factorization applied to the nullvectors. In Section b we dis-
cuss implementation aspects of the algorithm and elaborate on design tradeoffs.
In particular, we motivate the computational savings that can result from a
“good” initial QR factorization. In Section 6 we present some numerical exper-
iments and compare the numerical results of our algorithm with the unblocked
Chan/Foster scheme. In Section 7, we summarize our results.



2 Deriving a Rank Estimate from the Initial QR Factorization

In this section we describe how we compute an initial guess of the numerical
rank r of A using some initial QR factorization of A. To this end, we use
incremental condition estimation (ICE) [2, 6], a condition estimation scheme
designed to give approximations to the smallest or largest singular value and
the corresponding left singular vector of a sequence of increasingly larger upper
triangular matrices.

Using the formulation of [6], we can describe the key step in ICE for com-
puting approximations to the smallest singular value as follows. We are given
an upper triangular matrix Ry € R*** and a vector x5 € R* with [|z;||2 = 1 so
that 27 Ry = d¥ and 6; = ||dk||2 & omin(R). That is, ), is a good approxima-
tion of the left singular vector of Ry associated with its smallest singular value.
We then find s, = sin ¢, and ¢, = cos ¢y, such that ||dg41]|2 is minimized, where

(i) = o) R = (24 (B 7). a
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and then éx41 = ||di41]|2 is taken to be an estimate of opmin(Ri41). As shown
in [2,6], (sg, cx) and 841 can be computed in O(k) flops. ICE also provides for
an efficient and reliable method for computing approximations to right singular
vectors of the triangular matrix R: If 2, is an approximate left singular vector of
Ry, then yp = R;lxk/HR;lkaz is a corresponding approximate right singular
vector of Ry, because the computation of R;lxk corresponds to “one half” step

#(%)

is an approximate nullvector of R. The

of inverse iterations with RkR{. Moreover, if é; is small, then
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numerical experiments from [2,26] suggest that this scheme is a reliable means
for computing good approximations to omin (Rr+1). In particular, the estimates
for &5 derived from y; (i.e., after applying one backsolve to the initial ICE
vector) were always found to be correct to one digit [6].

ICE is well suited for monitoring the smallest singular value and condition
number of the leading triangular factor during the computation. Given an initial
QR factorization

AP = QR,

and a threshold 7 separating “small” and “large” singular values, we can use ICE
to cheaply compute an initial estimate of the numerical rank of A with respect
to 7. To this end, we monitor the smallest singular values é; of the leading
triangular submatrices R(1:k,1:k) for k = 1,...,n, using the ICE scheme just
described. We note that in general 8, will be estimated as the QR factorization
is computed, because of the incremental nature of ICE. This property of ICE
is crucial for the implementation of restricted pivoting schemes, where column



exchanges in the initial QR factorization are restricted to “computationally
convenient” ones [1,3,4,5].

We recall that the é;’s form a nonincreasing sequence of lower bounds for
the corresponding singular values o1(A); that is,

6k > by
Moreover, if the 8;’s are the exact singular values, then
8 < op(A).
The number 7 of lower bounds 8 strictly greater than the threshold 7,
012> .26 > T 2> biga, (5)

is therefore guaranteed to be a lower bound for the numerical rank . Further,
we are guaranteed that R(1: 7 1:7) is well conditioned because its smallest
singular value is greater than 7. In practice, the é;’s that we compute by means
of ICE are only estimates of the exact singular values; but one the other hand
these estimates are so good that we need not distinguish between exact singular
values and the estimates.

Rank-revealing QR factorizations are motivated by the following lemma,
which is proved in [10].

Lemma 1 Forany R € R"*" and any W = (%1) € R"*P with a nonsingular
2
Wso € RPXP | we have
[R(n—p+1in,n—p+Lin)lls <[[RWI[ [[W5 2. (6)

This means that if we can determine a matrix W with p linearly independent
columns, all of which lie approximately in the nullspace of R (i.e., [|[RW||2 is
small), and if W5 is well conditioned such that (omin(W2))"! = ||W2_1||2 1s not
large, then we are guaranteed that the elements of the bottom right p x p block
of R will be small.

By applying ICE to the initially computed QR factorization, we compute a
lower bound 7 of the numerical rank of A and an upper trapezoidal matrix

X = (( e ) xn) € g x(n=7) (1)

(that is, each x; has as many zeros appended as are needed to arrive at an
n-vector). By solving RY = X and normalizing the columns of the upper
trapezoidal matrix Y, we now obtain a set of approximate right nullvectors ¥
that satisfy

n 1/2
IRY ||2 < ||RY||r = ( > 53) < r/n-—r.
i=F+1
Thus, if the bottom triangular part Y5 of Y is well conditioned, then (6) guar-
antees that we have found an RRQR factorization.



3 A Block Algorithm for Finding Rank-Revealing Permutations

Lemma 1 implies that the computation of a rank-revealing QR factorization
hinges on finding a permutation P such that the smallest singular value of the
bottom block W5 of the nullspace matrix W of AP is reasonably large. This
point 1s also crucial if we wish to be sure that the é; are close to the oy, due to
the following Theorem:

Theorem 2 ([8]) Let Wz(i) denote the bottom (n —i+1) x (n— i+ 1) block of
W. Also, let & = omin(R(1 : 4,1 :4)) and 0; = ||R(¢ : n,i:n)||2. Then the i-th
singular value o; of A satisfies

i

Vi =i+ 1|(W)

0 <0 <oi/n— i+ LII(WE) Yl (8)
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To obtain an RRQR factorization for the special case p =1 (i.e., W in (6) is
a vector, and ¢ in Theorem 2 is n— 1), one can take W to be the singular vector
vy, corresponding to the smallest singular value of B and P the permutation
that brings the largest element (in modulus) of v, to the last position [14]. This
choice then guarantees that | 7p, | < /1 omin(4).

This idea was extended by Foster [13] and Chan [8] to higher dimensions,
namely the case p > 1. The idea is to “peel off” the small singular values of R
one by one: for i = n,n —1,...,7 one computes the right null-vectors y*) of
increasingly smaller ¢z x ¢ triangular submatrices. One then applies a left cyclic
shift of columns j through ¢ of R, where j is determined from

1959 = 1y oo

This changes the triangular structure of R into upper Hessenberg form, in the
sense that a lower bidiagonal appears from column j through column i. The
triangular form of R is then restored by means of Givens rotations. It is shown
in [9] that in this fashion we produce a matrix of approximate nullvectors W that

satisfies ||(W2(Z))_1||2 < /n27~% and hence the bounds in (8) are guaranteed to
be tight as long as p = n — r is not too large. Experimental results show that
this a-priori bound is rather pessimistic, and this conclusion goes along with
recent results by Hong and Pan [22] which show that there exists a permutation
matrix P such that for the triangular factor R partitioned as in (2) we have

[Raall2 < 0rg1(A) /r(n — ) + min(r,n —r), (9)

and

1
\/r(n —7r) 4+ min(r,n — 7“).

No practical algorithm is known, however, for computing this particular permu-
tation P.

Omin(R11) > 0,(A) (10)



The extra work in the Chan/Foster-algorithm, beyond the initial QR factor-
ization, is O((n — r)n?). In essence, for each of the n — r small singular values
of A, it requires some triangular solves for the computation of y*) and some
Givens rotations to reduce the Hessenberg matrix back to triangular form.

In our approach, we construct a well-conditioned W5 several columns at
a time. Remember that through a triangular solve with the ICE vectors we
obtained an upper trapezoidal matrix ¥ € ®*("~") whose columns are ap-
proximations to the nullvectors of R(1 : 4,1 : d),i = #4+ 1,...,n and hence
approximate nullvectors of AP. If we can now find a row permutation II and a
well-conditioned p x (n — 7) bottom block of Y,

(MY)n—p+1:n,1:n—7), p<n—7,

then a QR factorization of RII” is guaranteed to have a small trailing p x p
block. If we set p = 1, we obtain exactly the unblocked strategy. The main ad-
vantage of using p > 1 is that we capture all the small singular values that are
well approximated by the current QR factorization, whereas the unblocked al-
gorithm would require several (compute nullvectors + update QR factorization)
iterations to achieve the same effect.

As a result, the block approach is likely to require much fewer triangular
solves (which are comparatively expensive for sparse matrices and parallel ma-
chines). We also have many more choices as to what permutations we employ.
As will be seen in Section 5, this freedom allows one to reduce the work re-
quired for updates of the triangular factor and to increase the computational
granularity of the orthogonal updates.

Before we present the outline of the block algorithm, we give some thought as
to how we can generate a row permutation II that generates a well-conditioned
bottom block in I1'Y. Consider the orthogonal factorization

Iy =74, (11)
where Y and Z are upper trapezoidal, that is, they have the form

O O K Kk K K K K
O K K K K K K K
* K K K K K XK

IT is a permutation matrix, and 7 is orthogonal. Now define E({) to be an { x {
“exchange matrix”, for example,

E(4) =

—_ o o O
O = OO
OO = O
OO O =



and let E, be shorthand for E(number of rows of Y), and F. be short for
E(number of columns of Y). Then the factorization (11) is equivalent to

(EYTENENTE,)=(E.H'E)NE.ZTE,), (12)
and now (E.YTE,) and (E.ZT E,) have the form

¥ % k% %x  * k%
0 * * * * *x * * |;
0 0 * * % * * =x*

that is, (12) is a QR factorization, whose objective is to find a column per-
mutation that isolates a leading well-conditioned submatrix in (ECYTET). In
essence, this is another (though somewhat weaker) rank-revealing QR factor-
ization. Hence, through “flipping Y around”, we are in a position to use the
rank-revealing strategies we are already familiar with.

To generate a permutation I we assemble Y7 and then flip its rows and
columns to arrive at an upper triangular matrix

Y =(E.YTE,). (13)
We then compute the QR factorization

, (14)

such that Z has a well-conditioned leading triangular submatrix. Comparing
(11), (12), and (14), we immediately see that

n=fg0nreE,. (15)

As our block size p we choose the size of the largest leading triangular block
of Z, whose smallest singular value is larger than a threshold pz. A leading
triangular block in Z corresponds to a trailing triangular block in

7 =(E.ZVE,). (16)

As our p nullvectors we now choose the last p columns of 7, normalized to unit
norm. This scaling could change the smallest singular value of Z, so one might
add the additional condition that the norm of the first p columns be close to
1, but we found this to be naturally the case in our experiments; the smallest
singular values of the last p columns of Z before and after scaling were essentially
identical.

We also mention in passing that one could look at this problem as a “subset
selection” problem [14, 17], where one strives to identify the p most linearly
dependent columns in Y, but subset selection algorithms are more expensive
than the approach suggested here.

We are now ready to present an outline of our block algorithm in Fig-
ure 1. After computing an initial QR factorization, we repeatedly compute



1. Compute an initial QR Factorization: AP = QR.

Use ICE to compute é; = omin(R(1: k,1: k)
and approx. left singular vectors zy, k= 1,...,n.

Initial rank estimate: 7 « argmaxy ¢y, {0r > 7}
Nigst < N, W — []

repeat

Y — R(lznlastalznlast)_l (( xio-l—l ) e xnlast)'

Form Y as defined in (13).
6. Compute permutation II and QR factorization Y I = H Z

such that omin(Z(1 :p,1:p)) > pz for some 1 < p < nggse — 7.
7. Form 7 as defined in (16).

Let Z, be the last p columns of 7, normalized to have unit norm.

[ B L ]

8. Form II as defined in (15), and update the matrix of approximate nullvectors:
Zy Im o
v=((5).(5 1))
9. Update QE{ factorization:

compute ) and R such that R(1:nigst, 1:nlast)HT = QR

R QTR(l P Nigst, Nlast + 1: 77,)
10 = ( 0 R(nlast +1: n, Nast + 1: 77,)

Q 0\, ,_ (1O 0
QHQ(O I)’P'_P<0 1)'

11. Nigst < Nlast — P;

12. Use ICE to compute &3 & omin(R(1 : k,1:k)) and approx. left
singular vectors zy, k = 1, ... nyys¢ for the updated R.

13. New rank estimate 7 «— argmax; ¢3¢, {0 > 7}

14. until (7 = nygs)

Figure 1: An outline of the block RRQR algorithm.



lower bounds on the rank of A and peel off blocks of small trailing submatri-
ces by identifying well-conditioned submatrices in our current nullspace matrix.
Since the smallest singular value of the leading p x p block of Z is the same as
the smallest singular value of the trailing p x p block in Z, our algorithm ensures
that each bottom p x p block of Z, (computed in step 7) has a smallest singular
value that is not smaller than some threshold pz. The matrix W formed in step
9 will be upper trapezoidal, and the smallest singular value of each diagonal
block will be at least py. For example, when n = 10, » = 4, and we require
three block steps, identifying p = 1, 3, 2, respectively, W will have the form

S+ 4 ¥ % * ¥ x ¥

oo oo o4 ¥ ¥ % ¥
oo oo+ 4+ ¥ ¥ % *
O O O H4 ¥ ¥ ¥ ¥ ¥ ¥
o+ + 4+ ¥ % ¥ % * *

0

4 % * X * K K K ¥ X

where for emphasis the three diagonal blocks have been indicated by plusses.

So far we have not detailed which strategy we shall use to generate a well-
conditioned leading triangular block in the QR factorization of Y. This is pri-
marily an implementation issue, although an important one. We shall come
back to this issue in Section 5.

4 Theoretical Aspects of the Block Algorithm

In this section we show that the algorithm described in the previous section
does indeed compute the desired RRQR factorization. Specifically, we shall
show that

L. at every block step we are always able to find at least a one-by-one well-
conditioned subblock in Y'; and

2. if each of the diagonal blocks of W» has a reasonably large smallest singular
value, the same is true for W5 itself.

Hence our block algorithm will terminate in at most (n — F(O)) steps, where #(°)
is the rank estimate derived from the initial QR factorization, and the bounds
in (8) will be tight.

The first i1ssue is easily resolved by the following lemma.
Lemma 3 Let Y be an k x 1 (k < 1) matriz with rows of unit norm. Then there
exists a permutation I such that in the QR factorization YII = HZ, where I
is orthogonal and Z is upper triangular, we have

> Y, )|l > 1/V1
2 1> max VG )l > 1/VI

10



Proof. It Il is a permutation that exchanges rows 1 and j, the absolute value of
211 will be ||}~/(, 7|2, and the first inequality of the lemma follows immediately.
For the second inequality, note that since the rows of Y are normalized, any row
of Y contains an element whose absolute value is not smaller than 1/v/1, and as
a result the maximum column norm of Y will be greater than 1/\/7 0.

The bound in the lemmais pessimistic, in that max; <;j<; ||}~/(, J)|z2 is usually
significantly greater than 1/\/7, but 1t shows that we shall make progress in our
algorithm as long as we permute a column of Y with a reasonable large norm
into the first position, independent of whether the rest of the factorization of Y
captures the large singular values of ¥ or not. This also shows that in the worst
case we shall extract only one small singular value of R at every step, just as in
the unblocked algorithm.

In our algorithm, we base the determination of 7 on the lower bounds é; for
or. This is justified, as long as §; = oy, that is, as long as the bounds in (8)
are tight. To show this, we establish a bound on the smallest singular value of
Wa, the bottom (n — 7) x (n — ) submatrix of W constructed in the algorithm
of Figure 1.

Theorem 4 Let Wy be a block upper triangular matriz whose columns have
norm at most one, and with diagonal blocks 27, ..., 72 where ZU) is of size
p; and Omin(Z9)) > pz.5=1,...,J. Then

W5l < (VB +2) - (VBr—1 +2) [[(Z) 7 2 - 1Z9) 7 e (17)

A B

Proof. Consider the square block matrix D = ( 0 C

) all whose columns have

ATt A RO
0 ct )

norm at most one. The inverse of D is given by D~! = (

and therefore
1D~ Hl2 < A7 o + 167 Hla + 1A 2 [|Bll2 [1CT ]2

< (A7 ICTH ™+ 1Bl AT 2 1072 (18)

If pp denotes the number of columns of B, we readily obtain [|B||z < ||B||lr <
\/PB. Consider now ||[A=1]|2~t, which is identical to the smallest singular value
of A. As a result of the interlacing inequalities for singular values, 1t follows
that ||A=1||2~1 is less than or equal to the norm of any column of A, and thus
||[A=1|2=! < 1. The same holds for ||C'=!||z=!. Hence, we obtain

ID7 M2 < (Vo + 2)IA7 IO (19)
Applying this bound recursively, we immediately arrive at (17). a

Using this result, we can now show that the bounds for o7 and o741 at the
termination of our block algorithm are tight bounds.

11



Theorem 5 Let Ws denote the bottom (n—7) x (n—7) submatriz of W obtained
at the termination of our block algorithm. Then

o7

= 1 S
3(n—7+ D) [IW5 2

(57: S g5 (20)

and

orp1 <||R(F4 Lin, 7+ 1in)||2 < grpiv/n— 7 [|[W5 o (21)

Proof. Equation (21) was proved in [8, Theorem 3.1]. To prove (20), imagine
that we perform one more step of the block post-processing scheme, with a fixed
block-size of one (i.e., one step of the Chan/Foster algorithm). The bottom
element of the right nullvector produced in this imaginary step is numerically
greater than or equal to /n — 7. If we left-append W with this nullvector to
form W = (%1 ) with Wy € RP=7T+Dx(=7+1) ‘then we have from [8, Theorem
2
3.1]:
o

— <é
Vi —F+ T[[W5 2 T

If we then apply Eq. (18) to Wa, we immediately obtain (20). a

i < O

Theorems 4 and 5 ensure that the bounds (20) and (21) will be tight as long
as the diagonal blocks Z/ of W, are well conditioned, and as a result we shall
correctly capture the numerical rank.

5 Implementation Considerations

In this section we discuss implementation issues of the block RRQR. algo-
rithm. In particular, we show the following:

1. Some (if only very restricted) column exchanges in the initial QR factor-
ization are useful in preventing pathological underestimates of the initial
rank.

2. Applying column pivoting to the columns that were rejected by ICE in
the initial QR factorization helps in obtaining an initial ¥ that captures
many of the small singular values, and hence increases the likelyhood of a
large block size p in the first block iteration.

3. The structure of the permutations employed in the QR factorization (14) of
Y has a significant impact on the cost of the update of the QR factorization
of R(1:ngst, 1 niase) 1T (step 9 of the algorithm).

If we do not allow any pivoting at all in the initial QR factorization of A,
then our algorithm will not be effective in the (rare) cases where the very first
rows of A are linearly dependent. The following example illustrates this fact.

12



Let A have numerical rank » = n — 1, and let the very first column of A consist
of elements of size ,,. Then ICE correctly determines that the smallest singular
value of allthe leading principal submatrices of R are small, so the rank estimate
from ICE is 7 = 0, and this leads to a first block step of block-size p = n. Even
though we can hope to get a only well-conditioned 1 x 1 block in Y, the QR
factorization (14) would be that of an n x n matrix.

In order to avoid such a pathological underestimate of the initial rank, we
should use some column pivoting strategy that tries to maintain leading tri-
angular matrices in R reasonably well conditioned and permutes columns that
would make R too ill-conditioned to the back. The issue of computing an ini-
tial QR factorization with approximate RRQR. structure has been considered in
detail by Bischof and Hansen [4], and it has been shown there how ICE can be
advantageously employed in this context. Schemes tailored to factorizations of
dense matrices on various architectures are described in [1,3].

Let us now consider some issues related to the construction of the first Y
matrix in the block algorithm. In computing the initial QR factorization of A,
after 7 steps we arrive at a situation where

_ Ry R
s

Ry1 18 upper triangular of size 7, and ICE tells us that the smallest singular
value of any larger leading submatrix would be less than 7. That is, columns
7+1,...,nof AP are considered linearly dependent with respect to the threshold
7. We now have the choice of completing the QR factorization (22) either
without any further column exchanges, or by applying some column pivoting
based on Ass. This decision does not change our choice of 7, but we can greatly
improve our chances of obtaining a well-conditioned (n —7) x (n — #) submatrix
Ya=Y (74 1:n,:).

To illustrate this aspect, consider the following example. Assume that in
the partially completed QR factorization (22), after reducing the first column
of Ass, the next diagonal element (7 + 1,7+ 1) of R becomes zero. Then the
smallest singular value of all leading submatrices of R is zero, and the vector

(R;lez(:, 1)) ’ (23)

-1

(22)

appended with an appropriate number of zeros, 1s the corresponding nullvector.
As a result, all the n — 7 columns of the nullspace matrix Y assembled by ICE
will consist of duplicates of the vector (23) appended with zeros. Hence, the
rank of this nullspace matrix is one, leading to a block size of one in the first
iteration. If, on the other hand, we apply a pivoting strategy to Asy that tries
to maintain leading well conditioned triangular matrices of the corresponding
triangular factor Raa, then the smallest singular values of leading submatrices
of R will not drop so quickly. Hence, the assembled ICE vectors are much more

13



likely to be linearly independent, and the first block size is therefore likely to
be close to n — 7.

Another issue that warrants attention is the column exchanges employed
during the orthogonal factorization of Y (step 6 of the block algorithm). The
structure of the column exchanges employed in the factorization of Y determines
the structure of II”, and hence the cost of the QR factorization update of RIIT.

As is the case in the unblocked Chan/Foster algorithm, we prefer permu-
tations II7 consisting of a sequence of left cyclic shifts. If 117 is the product
of p such shift permutations, then the matrix R(1 : ngs,1 : nlast)HT in step
9 has exactly p nonzero lower diagonals, and so the cost of the update 1s at
most O(pn?) flops. Note that by generating p lower bands, our block algorithm
allows for the use of Householder transformations or block orthogonal transfor-
mations [7,25], in reducing RII” back to triangular form, whereas the unblocked
algorithm is limited to Givens rotations.

The following 10 x 10 example shows the structure of R(1 : nygse, 1 : nlast)HT
for a block size of p = 2 and 11T consisting of a left cyclic shift of columns 7
through 10, followed by a left cyclic shift of columns 5 through 9 (the corre-
sponding column permutations I of V are a right cyclic shift of columns 1
through 4 followed by a right cyclic shift of columns 2 through 6):

*

* K KK

* K K K K K

* Ok K K K K KK
¥k K K K KK KK
* K K K ¥

* K K K K K ¥

* K K K K K K K KK

RI” has two lower diagonals, starting from column 5. Obviously, the more
of the leading triangle of R is preserved in RII, the less the work involved in
reducing RII back to triangular form. Thus, it is advantageous to restrict the
permutations applied in the QR factorization of Y to those that involve columns
that are close to the beginning of Y.

A strategy that can easily be implemented is threshold pivoting. In the k-th
step of the traditional column pivoting strategy [16]—cf. Eq. (22)—one chooses
as pivot column j the column whose “residual” ||fi22(:,j)||2 Is maximum. In
threshold pivoting, the pivot column j is the closest column whose “residual” is
within a factor py of maxi<i<n—# ||f~122(:, i)|2-

Another pivoting strategy one could employ to limit the extent of column
exchanges in Y is restricted column pivoting. Here, at every step, only a selected
number of columns can be chosen as pivot candidates. In [4] it has been shown
that such a strategy is useful in computing approximate RRQR factorizations
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Figure 2: 100 x 100 matrix with staircase structure

while preserving the sparsity structure of the initial matrix, and this strategy
could be applied here as well.

6 Numerical Results

This section illustrates some of the implementation issues, demonstrates the
reliability of our algorithm, and compares it with the unblocked algorithm. Our
test matrices were square matrices of order 100 and with a staircase structure
as shown in Figure 2. Using PRO-MATLAB, we generated matrices of rank
7 = 80 and rank r = 95 with a geometric distribution of singular values between
o1 =1and ¢, = 1072, and also between Ory1 = 10~% and o, = 10~7. There is a
well-defined gap between “large” and “small” singular values, and our threshold
7= 5-107*is chosen to lie within this gap. We generated five random matrices of
rank 80 and 95 each. Since the orthogonal transformations we apply in obtaining
a banded structure usually grade a matrix in that numerically small elements
tend to appear in the lower right-hand corner, we generated five more test
matrices by “flipping” those matrices, that is, we applied the exchange matrix
FE(100) to rows and columns. As a result, if 4 has a small trailing submatrix, the
flipped version of A has a small leading submatrix. In the latter case it is much
harder to compute the rank-revealing structure, since the small submatrix has
to be transferred to the lower right hand side during the factorization process
in order to reveal the rank.

To avoid pathetic underestimates of the initial numerical rank, we employed
a very restricted column pivoting strategy in the initial QR factorization: We
considered only the next five columns as candidate pivot columns, and in that
restricted window, we applied threshold pivoting with a threshold of 10. Even
with this very restricted pivoting strategy, the initial rank estimate is usually
close to the true rank.
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Figure 3: Histograms of ||Y5!||2 for a set of 20 test-matrices, treated
without (top) and with (bottom) column pivoting among the “re-
jected columns”

To illustrate the beneficial effect that column pivoting in Agy (see (22)) has
on the norm of Yz_l, we considered two cases. In one case, we did not perform
any column exchanges in fizz; in the other we applied the traditional column
pivoting strategy. Since Ass corresponds to the bottom block of the columns
that the initial QR factorization considered “dependent”; and hence permuted
to the back, A5 is usually dense, and column pivoting introduces only negligible
extra overhead. Nonetheless, the effect on [|Y; |2 is considerable, as is shown
in Figure 3 which displays histograms of the distribution of log||Y5 |2 for the
two cases. The top histogram corresponds to the case where we did not employ
any column exchanges in the factorization of fizz, and as a result we obtain
some fairly illconditioned Y5. In contrast, column pivoting in Ags leads to much
better conditioned Y3. Therefore, in our experiments, we always apply the
traditional column pivoting strategy to the “dependent” columns in the initial
QR factorization.

The measures of the quality of the RRQR factorization are

o the computed relative gap 87/0s41 (where 67 is the ICE-estimate of o
and 611 = [|R(7+ 1 : n,7+ 1 : n)||2 is an estimate of o741), and

e the norm ||IW; !||2 of the inverse of the bottom triangular block of the
computed nullspace matrix W.

The relative gap should be close to ¢,/0,41 to ensure that we capture the
correct numerical rank, and the gap between “large” and “small” singular values.
|IW5 |2 should be as small as possible to ensure tight guaranteed bounds for
the estimates 67 and 6741, and a good approximation to the nullspace.
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Figure 4: The computed relative gap 87 /60741 using different thresh-
olds py and pgz in the blocked and unblocked algorithms

In the block RRQR algorithm, we employ a QR factorization of ¥ with
threshold column pivoting, with thresholds py =1 (i.e., the traditional strategy
is performed), and py = 5. The same thresholds are also employed in Chan’s
unblocked algorithm for deciding on the pivot column, 1.e. one permutes column

k of R to the back if

| yj
where y is the singular vector corresponding to the smallest singular value of
the currently considered leading triangular submatrix. For the threshold pz in
step 6 of the algorithm, we experimented with

pz =10.0, 25.0, 100.0.

k = arg max{
j

The parameter pz has no equivalent in the unblocked algorithm.

In Figures 4 and 5 we show the gap é7/60711, and the norm ||W2_1||2 for the
unblocked algorithm, and our block algorithm for pz = 10 and pz = 25. The
left plot corresponds to choosing py = 1, the right one to py = 5. We see that
the unblocked algorithm and the blocked one with pz = 10 behave just about
the same, whereas pz = 25 can lead to worse results. For pz = 25 in some cases
we were content with the initial QR factorization, and the resulting peaks in
W5 t||2 are quite noticeable for py = 1. For pz = 100.0 we always accepted
the initial QR factorization, and in most cases we did not consider 1t sufficiently
rank revealing to be generally acceptable.
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Figure 5: The norm ||W5 |2, computed by using different thresholds
py and pz in the blocked and unblocked algorithms

The threshold py has some influence on the quality of our RRQR factoriza-
tion, in that py = 1 leads to a relative gap é7/0711 consistently very close to
its optimal value 103 and to very well conditioned W5’s. The cost of these good
bounds is a significant amount of pivoting and updating of the QR factorization
(steps 9 and 10 of the algorithm). Typically, the pivot column for these test ma-
trices was one of the very first columns of E. We also see that when we change
the threshold py to 5.0 in order to reduce the extent of column exchanges and
the cost of updating RII” | the quality measures deteriorate somewhat: ||, ||
by a factor of about 10, with a more pronounced effect for the relative gaps.
Nonetheless, we find they are still good enough to ensure the computation of
a reliable RRQR. factorization. The deterioration of ||IW5 (|2 is due to the fact
that more block steps are performed when py = 5. For example, for py = b the
average number of block steps was 2.65, whereas it was 2.00 for py = 1. As The-
orem 4 suggests, ||[W, ||z will deteriorate when more block steps are performed.
For the block algorithm, there was no significant difference in the number of
block steps performed for the matrices of rank 80 or 95, while the unblocked
algorithm requires 20 and 5 steps, respectively. For all those algorithms, and
essentially independent of the thresholds py and pgz, the norm [|A W[z was of
the order 1075,

In all cases, the block algorithm 1dentified a large block in the first step, and
the average values for the size of the first block i1s shown in Table 1. Recall
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Table 1: Average Size of First Block

I [ py=11p=5]
=80 16.6 16.2
=95 4.2 2.9

that the maximum possible block sizes are 20 and b5, respectively. It is not
surprising that the size of the first block is smaller when py is larger, since
then we work less to identify a well-conditioned leading triangle. This result
confirms the computational benefits that we predicted for our block algorithm:
While the unblocked algorithm has to identify each small singular value one by
one, hence requiring n — r iterations where we compute a nullvector and update
a QR factorization, the block algorithm identifies all those small singular values
that are well captured with the current QR factorization. Otherwise, we noticed
much the same behavior, in that the same columns of A were permuted to the
back, and this is borne out by the similar behavior of blocked and unblocked
algorithms in Figures 4 and 5. We also noticed that for both the unblocked and
the blocked algorithm, py = 5 led to a significant decrease of the work.

From these experimental results we draw the following conclusions:

e The quality of the singular value estimates 6z and 6711, and thus the
reliability of the rank estimate 7, is quite sensitive to the size of ||y |,
that is, to the condition of the bottom triangular block of the null space
matrix W.

e The fact that [|[AW]|2 is small does not guarantee that one has obtained
an RRQR factorization.

o A pivoting threshold py > 1 can significantly reduce the amount of work
for updating RII” | at the expense of somewhat weaker bounds. A choice
of py = b5 seems to be adequate.

e The threshold pz has a large influence on the quality of the RRQR factor-
ization. A threshold pz = 10 seems to be adequate to guarantee a reliable

RRQR factorization.

e The first block in our block algorithm is usually by far the largest; thus, in
this step, the computational savings of the block algorithm are the most
pronounced.

7 Conclusions

We have presented a block algorithm for computing a rank-revealing QR
factorization. The algorithm is based on incremental condition estimation as a
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means for computing blocks of approximate nullvectors, which are then used to
isolate blocks of the triangular factor with small norm. While the unblocked
algorithm peels off the small singular values one at a time, thereby neglecting
implicit information about other small singular values already captured in the
current QR factorization, the block algorithm captures all small singular values
that are well approximated in the current QR factorization.

We showed how we can generate well-conditioned triangular blocks in the
nullspace matrix (and hence small trailing blocks in the triangular factor) by
computing what is essentially a rank-revealing QR factorization of a suitably
permuted nullspace matrix. We also proved the correctness of this approach.

We discussed implementation issues of this algorithm and compared one such
implementation with the unblocked algorithm. As expected, the blocked algo-
rithm behaves numerically like the unblocked one, yet it requires many fewer
passes. As aresult, the block algorithm significantly decreases the number of tri-
angular solves employed and allows for the use of Householder transformations.
This feature makes the block algorithm attractive for sparse matrices and for
high-performance (in particular parallel) architectures, where triangular solves
and sequential Givens updates are expensive to implement.
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